ИСПАРЕНИЕ

явление перехода твердых и жидких тел в соответствующее им газообразное состояние — в пары, переход, не сопровождающийся разложением молекул сложных тел на составляющие их атомы (в отличие от диссоциации, см. ниже). Множество разных наблюдений заставляет нас предполагать, что все тела при всех температурах испаряются; большинство твердых тел и многие жидкости (напр. тяжелые масла) испаряются при обыкновенных условиях чрезвычайно слабо и медленно, некоторые же твердые тела (камфара) и многие жидкости испаряются при тех же условиях быстро и сильно; эти последние вещества называют поэтому иногда летучими. И. воды (снега), спирта и других легкоиспаряющихся веществ наблюдается по изменению объема или веса их с течением времени; И. трудноиспаряющихся веществ становится заметным глазу лишь при высоких температурах; на И. этих веществ и при более низких температурах указывает в некоторых случаях запах их (камфара, нафталин, мускус, некоторые металлы). И. состоит в отделении частиц от свободной поверхности тел в соседнюю окружающую среду. Это явление становится сильнее с повышением до некоторого предела ее, при котором парообразование начинается во всей массе жидкости; t° эта называется температурой кипения, само явление — кипением. Температура кипения есть характерная для каждого вещества величина. Если И. происходит в замкнутом пространстве, то вещества, как показывает опыт, испаряются в определенном количестве, после чего И. прекращается. Тогда пар насыщает пространство, в котором он образовался, и называется насыщающим. В этом случае И. прекратится, когда газ, находящийся внутри пространства, получит вследствие И. упругость большую, чем она была раньше. Этот избыток упругости всегда тот же для той же жидкости при той же температуре, независимо от формы и размеров замкнутого сосуда, от природы и давления заключенного в нем газа. Этот избыток упругости измеряется давлением ртутного столба некоторой вышины; если в замкнутом пространстве не было первоначально никакого газа, то высота ртутного столба прямо показывает упругость паров данной жидкости, насыщающих при данной t° пространство. Упругость паров над жидкостью противодействует стремлению частиц отделиться от поверхности ее, и когда пар насытит пространство, то упругость его такова, что как раз равна стремлению частиц к отделению, и тогда И.прекращается. Если упругость паров в окружающем пространстве меньше этой предельной упругости, то пары насыщают пространство и жидкость будет продолжать испаряться, пока не насытит пространство или вся не испарится. Если при этом сосуд с жидкостью находится в незамкнутом пространстве, то соседний с жидкостью слой воздуха насыщается мало-помалу парами, но И. не прекращается, так как пар из этого слоя диффундирует в окружающий воздух или уносится его течениями; таким образом над сосудом с жидкостью устанавливается, при спокойном воздухе, столб пара, упругость которого от предельной (у уровня жидкости) падает по мере удаления от жидкости до нуля (теоретически вывел Стефан, 1882; опытно показал Блазиус, 1884). Столб этот растекается по бокам, пар из него уносится диффузией и течениями, и жидкость мало-помалу вся испаряется. Если уменьшением объема замкнутого сосуда мы сделаем упругость больше предельной, то пары, начиная пересыщать пространство, собираются в жидкие частицы и оседают (конденсируются), соединяясь с жидкостью до тех пор, пока не останется столько пара, что он как раз насыщает пространство при данной температуре. Состояния пара ненасыщающего и перенасыщающего — состояния неустойчивые, стремящиеся перейти при посредстве И. или конденсации в состояние пара, насыщающее пространство. Воздух заключает всегда некоторое количество водяных паров, и относительное количество их определяется понятием о влажности (см.). В сыром помещении, т. е. таком, в котором водяные пары насыщают пространство, вода, выставленная в открытом сосуде, не будет вовсе испаряться, между тем как в сухом воздухе вода будет испаряться, пока его не насытит. Если мы внезапно охладим воздух, то водные пары, насыщавшие его раньше, будут его перенасыщать и осядут в виде росы; наоборот, если мы нагреем воздух насыщенный парами, то возобновим в нем испарение. Стремление к И. растет с , причем растет и упругость паров, насыщающих пространство; температура кипения наступает тогда, когда упругость паров достигнет упругости газа, окружающего жидкость. Температура кипения зависит от давления окружающего газа и тем выше, чем больше давление. И. — явление, неразрывно связанное с существованием жидкостей, и потому играет весьма важную роль в природе и в промышленности. Изучение его привело к ряду данных о скорости И. и о явлениях, его сопровождающих, данных весьма противоречивых и до сих пор еще не объединенных и даже не вполне ясных. Скорость И., т. е. время, потребное на И. единицы веса тела (напр. грамма) с единицы поверхности (напр. кв. стм.), зависит: 1) от поверхности жидкости и легкости удаления из нее диффундирующего пара, т. е. от размеров и формы сосуда, в котором находится жидкость; 2) от природы внешней среды и ее движения или покоя; 3) от t° жидкости; 4) от внешнего давления; 5) от природы жидкости; 6) от природы поверхности, с которой происходит И., и 7) от некоторых других причин, напр. электризации жидкости.
1) Влияние формы и размеров сосуда на И. Влияние это слагается из: а) влияния величины поверхности, b) влияния формы сосуда на легкость удаления паров посредством диффузии. Долго полагали, что количество испарившейся жидкости пропорционально ее поверхности. Дальтон, давший в 1803 г. для количества P испаряющейся в единицу времени жидкости формулу:
Р = [AS(F — f)]/H.. . (1)
где S - поверхность сосуда, F — предельная упругость при данной темпер., f — упругость пара в окружающей среде, H — барометрическое давление, а А — коэффициент, зависящий от природы жидкости, нашел это предположение справедливым для не слишком малых поверхностей. Убеждение в справедливости этого соотношения держалось до последнего времени, хотя уже Рейшауер (1861 г.) и позже Фризиани (1876 г.) показали, что это не так. Из 4-х сосудов Рейшауера, поверхности которых были в отношении 1:2,78:5,50:19,05, испарились количества воды в отношении 1:2,6:4,48:12,66. У Фризиани с двух поверхностей с отношением 1:4 испарились количества в отношении 1:2,73. Позже в 1882 г. Стефан теоретически вывел формулы для скорости И. из круговых и эллиптических сосудов, из которых видно, что И. пропорционально радиусу, а не поверхности сосудов. Формула Стефана:
Р = 4Krlgn[(H — f)/(H — F)].. . (2)
где K — коэффициент диффузии пара в окружающей среде, а r — радиус сосуда, проверена была им самим и найдена верной для кругов и не слишком растянутых эллипсов; к тому же результату о пропорциональности И. окружности, а не поверхности пришел и Б. И. Срезневский ("Журн. Русск. физико-химического общества", XIV и XV), исследуя И. капель с помощью эвапориметра Ф. Ф. Петрушевского. В 1885 г. Гудайль предложил новый закон, который гласит, что И. пропорционально величине некоторой фиктивной "поверхности И.", которая получится, если мы построим поверхность, соединяющую все точки среды, окружающей жидкость, в которых упругость паров еще насыщает пространство. Нужно полагать, что предположение Гудайля правильно и что неправильности формул Дальтона и Стефана происходят от влияний краев сосуда на истечение и диффузию пара. Влияние трудности диффузии на скорость И. заметно даже в широких сосудах. Стефан (1882 г.) теоретически показал, что в круглом сосуде радиуса r на расстоянии а от центра вследствие большей трудности диффузии испарится меньше, чем у краев, а именно:
p = P/[2πr√(r2 — a2)].. . (3)
где P — все количество испарившейся жидкости. Опыты Винкельмана (1888 г.) вполне подтвердили формулу Стефана. Влиянию различной легкости диффузии следует также приписать разности в И. из равновеликих сосудов разных форм. Фризиани (1876 г.), испаряя воду с 5 равных поверхностей формы круга, шести-, пяти-, четырех— и треугольника, получил относительные количества 1:1,03:1,02:1,03:1,12. И. из тонких капиллярных трубок следует приведенным выше законам, только пока уровень жидкости не опустится в трубке; тогда, как показал Стефан (1874 г.), испарение следует законам: 1) И. обратно пропорционально расстоянию уровня от края трубки, 2) скорость И. не зависит от диаметра. Опыты Гульелмо (1882 г.) и Винкельмана (1884 г.) подтвердили в общем положения Стефана, но Винкельман показал, что эти законы лишь приблизительны и изменяются, смотря по обстоятельствам (состав жидкости, температура, давление и т. д.).
2) Влияние природы внешней среды и ее движений. Природа внешней среды влияет постольку, поскольку меняется коэффициент диффузии пара с изменением ее. В 1876 г. Кирхман показал, что камфара, легко улетучивающаяся и возгоняющаяся в воздухе, вовсе не улетучивается при тех же условиях в углекислоте и, как позже показал де Гин (1891 г.), — в водороде. По опытам Кирхмана, углекислота плохая испарительная среда для терпенов, хлороформа и сернистого углерода и, наоборот, хорошая для эфира, алкоголей и воды. Струя углекислоты, пропущенная над смесью спирта с эфиром, быстро испаряет эфир, извлекает воду из эфирных масел и т. д. В 1877 г. Баумгартнер нашел для эфира, сернистого углерода, хлороформа и алкоголя приблизительно следующие отношения скоростей И. в воздухе, углекислоте, водороде и светильном газе:
----------------------------------------------------------------------------------------------
| Воздух      | Углекислота   | Светильный газ   | Водород     |
|--------------------------------------------------------------------------------------------|
| 1                | 0,80               | 1,60                     | 3,50            |
----------------------------------------------------------------------------------------------
Почти те же величины получил и Гульельмо (1881 г.), исследовавший тот же вопрос. Отсюда Баумгартнер заключил, что скорость И. обратно пропорциональна корням квадратным из плотностей газов (отн. плотностей 1:1,5:0,45:0,069, обратно отн. корня из плотностей 1:0,82:1,5:3,85). Винкельман, исследуя И. гомологич. эфиров в воздухе, углекислоте и водороде, нашел этот закон лишь приблизительно верным. По де Гину (1890 г.), И. зависит и от внутреннего трения газовой среды и скорость И. тем больше, чем больше коэффициент внутреннего трения [Наблюдения над И. и служат для определения коэффициентов диффузии.]. Движения газовой среды, окружающей жидкость, сильно способствуют быстроте И. Влияние их заключается в удалении газа, уже насыщенного парами, и в ускорении процесса диффузии. Сильное влияние ветра на быстроту было известно уже давно. Гудайль (1885 г.) наблюдал, что ветер со скоростью всего 0,25 м в секунду увеличивает И. почти в три раза. Подробнее исследовал вопрос де Гин (1891 г.); он нашел, что вначале скорость И. растет весьма быстро с увеличением скорости воздушного потока, при больших же скоростях все медленнее и медленнее; для средних скоростей скорость И. пропорциональна корню квадратному из скорости воздушного потока.
3) Влияние температуры. Повышение температуры жидкости и окружающей среды влияет двояко на увеличение скорости И.: 1) повышая упругость пара жидкости и 2) облегчая диффузию паров. С повышением быстро растет упругость паров, насыщающих пространство, как видно из следующего:
--------------------------------------------------------------------------------------------------------------------------------
| Т =                             | -20°         | 0             | +20°        | +50°    | +100°    | +200°    |
|-------------------------------------------------------------------------------------------------------------------------------|
| Вода                          | 0,93 мм   | 4,6          | 17,4        | 92,0    | 760       | 11689    |
|-------------------------------------------------------------------------------------------------------------------------------|
| Эфир                          | 68,9 мм   | 188,4       | 432,8       | 1264    | 4953     | -           |
|-------------------------------------------------------------------------------------------------------------------------------|
| Спирт                         | 33,4 мм   | 12,7        | 44,5        | 219,9   | 1698     | -           |
|-------------------------------------------------------------------------------------------------------------------------------|
| Ртуть                         | -             | 0,0002     | 0,0013     | 0,013   | 0,285    | 18,25    |
|-------------------------------------------------------------------------------------------------------------------------------|
| Жидк. углекислота      | 27 атм.   | 35 атм.    | 58 атм.    | -          | -           | -           |
|-------------------------------------------------------------------------------------------------------------------------------|
| Жидкий аммиак          | 1,8 атм.  | 4,2 атм.   | 20 атм.    | -          | -           | -           |
--------------------------------------------------------------------------------------------------------------------------------
Камфара: при T = 41°.. . 1,7 мм; при Т = 101°.. . 27,2 мм; при Т = 160°.. . 240,7 мм (по Рамзею и Юнгу).
По Дальтону (1803), скорость И. растет пропорционально разности (F — f). Де Гин (1892), работавший на 89 лет позже, пришел к аналогичной формуле:
v = А(F — 0,88f)√(v).. . (4)
где А — постоянная, a v скорость течения воздуха. Стефан (1874) поверил опытами свою формулу (форм. 2) и нашел ее согласной с действительностью; по-видимому она, хотя и выведена из теоретических оснований, ближе выражает истину, чем формула Дальтона и де Гина. Когда в этой формуле F =H, то наступает неограниченное И., т. е. кипение [На упругость пара, а следовательно, и скорость И., кроме температуры, влияет еще, как показали лорд Кельвин (1870), Варбург, Гельмгольц (1875) и др., и величина поверхностного натяжения жидкости. И. должно идти быстрее с выпуклых поверхностей и медленнее с вогнутых. Но это влияние так незначительно, что для мениска в трубке в 0,001 мм диам. изменение упругости пара равно едва 0,1°.].
Повышение температуры облегчает диффузию паров и увеличивает поэтому скорость И.; это предсказал Стефан и подтвердил опытами Винкельман (1884). Последний показал, что при высоких температурах И. в капиллярных трубках вследствие легкости диффузии не следует второму закону Стефана (см. выше); де Гин (1891) показал, что даже одно нагревание внешней газовой среды благодаря облегчению диффузии ускоряет И. Жерне (1874-1876), исследуя И. перегретых выше точки кипения жидкостей, получил результаты, к которым не приложимы ни законы Дальтона, ни Стефана, очевидно вследствие сильного выделения пара и быстрого его удаления во внешнюю среду.
4) Влияние внешнего давления и паров, заключающихся во внешней среде. По формуле Дальтона (форм. 1), И. обратно пропорционально барометрическому давлению. Гудайль (1885), проверяя эту формулу, нашел ее достаточно точной при спокойном воздухе, Винкельман же (1888) убедился, что формула Стефана ближе выражает истину; опыты с водой при внешних давлениях от 50-760 мм дали разницы с формулой Стефана лишь в 1,5%, а с формулой Дальтона — до 12%. Влияние влажности внешнего воздуха на скорость И. воды исследовал непосредственно только де Гин (1891). Он пропускал (при Т = 20°) над испарителем струю воздуха разной влажности от 0% до 100% и получил при этом следующие относительные количества испарившейся воды:
----------------------------------------------------------------------
| Влажность   | И.        | Влажность   | И.       |
|--------------------------------------------------------------------|
| 0                  | 103,8   | 60,0             | 46,5    |
|--------------------------------------------------------------------|
| 7,7               | 89,1     | 62,4             | 41,8    |
|--------------------------------------------------------------------|
| 14,3             | 83,7     | 100,0           | 9,0      |
----------------------------------------------------------------------
Интересен факт, что и насыщенный парами воздух увлекал еще водяные пары, хотя, вероятнее всего, это увлечение было чисто механическое.
5) Влияние природы вещества. Различные вещества, обладая различной упругостью пара и различными коэффициентами диффузии их паров, обладают при тех же условиях различной скоростью И. Так, при Т = 20° Ц. имеют упругости пара:
--------------------------------------------------------
| Алкоголь                    | 44 мм         |
|-------------------------------------------------------|
| Амил. спирт               | 2,77 мм      |
|-------------------------------------------------------|
| Метил. спирт             | 88,67 мм     |
|-------------------------------------------------------|
| Пропил спирт             | 15,2 мм      |
|-------------------------------------------------------|
| Изобутил. спирт         | 8,6 мм        |
|-------------------------------------------------------|
| Изоамил. спирт          | 2,3 мм        |
|-------------------------------------------------------|
| Уксусн. кислота         | 11,73 мм     |
|-------------------------------------------------------|
| Муравьиная кислота  | 31,4 мм      |
|-------------------------------------------------------|
| Хлороформ                | 160,5 мм     |
|-------------------------------------------------------|
| Бензол                       | 75,65 мм     |
|-------------------------------------------------------|
| Этил. эфир                | 433 мм       |
|-------------------------------------------------------|
| Серн. углерод            | 91 мм         |
|-------------------------------------------------------|
| Ртуть                         | 0,0013 мм   |
|-------------------------------------------------------|
| Жидкая углекислота  | 58,8 атм.     |
|-------------------------------------------------------|
| Жидкий аммиак         | 8,2 атм.      |
--------------------------------------------------------
Коэффициенты диффузии в воздухе при 0°:
--------------------------------------------------
| Эфир                       | 0,0775    |
|-------------------------------------------------|
| Алкоголь                  | 0,1016    |
|-------------------------------------------------|
| Сернистый углерод  | 0,0883    |
--------------------------------------------------
Неоднократно пытались, не входя в эти особенности каждого вещества, определить зависимость между молекулярными весами веществ и скоростью их И. Де Гин (1883) нашел, изучая И. эфиров жирных кислот, что "молекулярная летучесть" их, т. е. частное от убыли в весе в единицу времени, деленное на молекулярный вес, образует геометрическую прогрессию с определенным знаменателем для каждого ряда веществ (знаменатель приблизительно = 3). Аналогичные законы нашли Винкельман (в равные времена испаряются равные веса) и Спербе (1887). Позже, в 1891 г., де Гин думал найти новую законность — именно что количества испарившихся веществ caeteris paribus относятся как произведения упругости пара на молекулярный вес. Ближе к истине подходит простой закон, найденный и проверенный на большом количестве веществ Шаллем и Коссаковским (1891), именно: времена, в которые испаряются равные веса жидкостей (кроме воды и некоторых спиртов), обратно пропорциональны молекулярным весам, т. е.
(Zmp)/s = Const.. . (5), или
произведение времени И. (Z) на молекулярный вес (т) и упругость пара (р), разделенное на плотность (s), есть величина постоянная, близкая к единице. Эта величина для
--------------------------------------------------------------------------------------
| Сернистого углерода  | 1        | Хлороформа  | 1,007   |
|------------------------------------------------------------------------------------|
| Эфира                        | 0,99   | Ацетона         | 0,954   |
--------------------------------------------------------------------------------------
И. растворов солей идет медленнее И. одного растворителя, так как упругость паров раствора тем меньше упругости паров растворителя, чем больше соли в растворе. Так, по Вюльнеру упругости водных растворов едкого кали (KOH) при 20° Ц. следующие:
--------------------------------------------------------------------------------------------------------
| Процент KOH       | 9,1%          | 16,7%        | 28,6%      | 32,9%       |
|-------------------------------------------------------------------------------------------------------|
| Упругость пара    | 16,4 мм      | 15,20         | 12,4         | 10,45        |
--------------------------------------------------------------------------------------------------------
между тем как для воды при 20° Ц. упругость равна 17,4 мм. Лаваль (1885), исследовавший в обширной работе различные вопросы И., нашел для И. растворов зависимость:
е/Е = .. . (6), где
е — количество испарившегося раствора, Е — количество воды, испарившейся при тех же условиях в то же время, s отношение количества соли в растворе к тому, которое насыщало бы раствор при этой температуре, К — коэффициент, величина которого для:
------------------------------------------------------------------------------------------
| Углекислого кали     | 0,80   | Поваренной соли   | 0,49    |
|----------------------------------------------------------------------------------------|
| Углекислого натра   | 0,83   | Хлористого калия   | 0,47    |
------------------------------------------------------------------------------------------
и т. д.
Величина К приблизительно равна для всех температур. И. смесей легко испаряющихся жидкостей подчиняется весьма сложным законам. Планк (1888) показал теоретически, что состав пара этих смесей в процентном отношении другой, чем состав смеси; Коновалов (1881) и Винкельман (1890) подтвердили это на опыте. Напр. пар 6,1% раствора изобутилового спирта в воде имеет состав пара: 66% спирта и 34% воды. Вот, по Лавалю, результат двух опытов над И. спирта с водой:
--------------------------------------------------------------------------------------------------------------------
| Алког.        | И. смеси    | И. спирта   | И. воды   | И. чистого  | И. чистой   |
| градус.      |                  | в смеси     | в смеси   | спирта       | воды          |
|------------------------------------------------------------------------------------------------------------------|
| 43,5           | 0,45           | 0,36           | 0,09         | 0,58           | 0,29           |
|------------------------------------------------------------------------------------------------------------------|
| 14,2           | 1,04           | 0,797         | 0,243       | 1,69           | 0,36           |
--------------------------------------------------------------------------------------------------------------------
Растворение газов в воде (CO2, NH3) замедляет, по Лавалю, ее И., содержание в ней мелких подвешенных в ней тел (мел и т. д.) ускоряет И.
6) Влияние природы поверхности, с которой происходит И. Опыты Виоли (1873), Фризиани (1877), де Гина и других показали, что И. происходит быстрее со смоченной поверхности, впитывающей жидкость (напр. пропускная бумага), чем со свободной поверхности ее. Лаваль (1885) показал, что это справедливо не для всех поверхностей и не для всех жидкостей. Весьма важный в геофизическом отношении вопрос об И. воды из земли исследован был Габерландтом (1881) и Бателли (1891). Результаты этих исследований дали: 1) И. с сырой земли при возрастающей температуре больше И. с равной свободной поверхности воды, при падающей температуре — меньше; 2) с увеличением скорости ветра скорость И. со свободной поверхности растет быстрее, чем И. с земли; 3) чем больше влажность воздуха, тем больше отношение И. с земли к И. со свободной поверхности; 4) отношение это растет при возрастающей температуре и падает при убывающей.
7) Другие влияния. Электризация жидкости, по опытам Маскара (1876), увеличивает скорость И. иногда в 2-3 раза; увеличение скорости зависит, очевидно, от ускорения диффузии, так как, по теоретическим выводам Бути и И. И. Томсона, электризация поверхности жидкости уменьшает, правда, весьма, незначительно, упругость пара над ней.
Вопросы о скорости И. имеют весьма важное значение как для изучения природы, так и в промышленности (перегонка, устройство паровых котлов и т. д.).
Испарение твердых тел представляет некоторые особенности. Весьма часто кажущееся испарение их есть диссоциация вещества, напр. распадение нашатыря на аммиак и хлористоводородный газ. Диссоциация имеет тоже предельную упругость, при которой в замкнутом сосуде прекращается, и в этом отношении представляет много аналогии с И. Особенность, отличающая ее от И., состоит в том, что она сопровождается разложением вещества. Есть случаи, когда трудно разграничить И. и диссоциацию, именно тогда, когда вещества (напр. фосфор, йодистая ртуть) возгоняются в двух разных видах [желтая и красная йодистая ртуть (Франкенгейм), аморфный или кристаллический мышьяк (Гитторф) и т. д.]. Разница в видах обусловливается обыкновенно температурой возгонки; у аморфных видов упругость паров больше, чем у кристаллических, и поэтому они возгоняются раньше и быстрее последних. Так (Энгель, 1883), кристаллический мышьяк возгоняется только при 360° в пустоте, а аморфный уже при 260°.
Выветривание (см.) кристаллов представляет И. кристаллической воды их. Дебре (1868) показал, что и выветривание имеет предельную упругость, по достижении которой в замкнутом сосуде прекращается. Видеман (1874) и Мюллер-Ерцбах (1884) подтвердили данные Дебре и тождество выветривания с испарением. Распыление металлов в пустоте при накаливании током и распыление их при освещении, недавно (1890) наблюденное Ленардом и Вольфом, не причисляются обыкновенно к явлениям И., хотя все опытные данные указывают на то, что нет никаких причин делать это различие.
Если вещество может существовать при той же t° в двух видах — твердом и жидком, как напр., вода, то, как показали В. Томсон и Кирхгоф, ниже температуры плавления упругость паров жидкости будет больше упругости паров твердого тела при той же температуре; при температуре плавления упругости паров твердого и жидкого тела равны. Поэтому переохлажденная вода испаряется быстрее льда, а при 0° И. льда и воды идет одинаково быстро. По опытам Фишера, разница в упругости паров льда и воды при -10 градусах равна 0,28 мм ртутного столба, при — 5°.. . 0,18 мм, при -1°.. . 0,03 мм, а при 0° этой разницы, как и предвидит теория, нет.
Явления, сопровождающие испарение. И. веществ сопровождается рядом связанных с ним явлений, именно: 1) поглощением тепла, 2) электризацией, 3) увеличением растворенных в жидкости веществ вместе с парами.
1) Тепло, поглощаемое при испарении, называется скрытой теплотой парообразования и состоит из суммы двух частей: одна часть тепла идет на внешнюю работу, потребную для расширения вещества из объема жидкости в объем пара (внешняя скрытая теплота), другая уходит на само изменение состояния, т. е. на преодоление противодействующих И. сил сцепления (внутренняя скрытая теплота). С увеличением температуры первая величина увеличивается, вторая — уменьшается, и сумма обеих величин при этом уменьшается. Величины скрытых теплот для разных температур воды в калориях (единицы теплоты) следующие (по Цейнеру):
------------------------------------------------------------------------------------------------------------------------
| Темпер. по Ц.   | Внешн. скр. тепл.   | Внутр. скр. тепл.    | Скрыт. тепл.         |
|-----------------------------------------------------------------------------------------------------------------------|
| 0                      | 31,07                      | 575,43                    | 606,50                  |
|-----------------------------------------------------------------------------------------------------------------------|
| 20                    | 32,75                      | 559,83                    | 592,58                  |
|-----------------------------------------------------------------------------------------------------------------------|
| 50                    | 35,54                      | 536,12                    | 571,66                  |
|-----------------------------------------------------------------------------------------------------------------------|
| 100                   | 40,20                      | 496,29                    | 536,49                  |
------------------------------------------------------------------------------------------------------------------------
Скрытая теплота парообразования у различных веществ весьма различна, у воды около 550-600 калорий, у хлороформа.. . 67, у эфира.. . 93, у жидкой углекислоты.. . 57, у жидкого аммиака.. . 294. Были попытки найти зависимость между скрытой теплотой парообразования и другими постоянными у разных веществ. Довольно близок к истине закон Троутона (1884):
Mr/T = Const... . (7), т. е.
произведение молекулярного веса (М) на теплоту парообразования (r), деленное на абсолютную температуру кипения (T) [Абсолютная температура получается из температуры, выраженной в градусах Ц., прибавлением 273; напр. абс. темп. кипения воды = 100 + 273 = 373.], есть величина постоянная (около 23-26). Тепло, поглощающееся при И., отнимается от испаряющегося вещества и окружающей среды и производит охлаждение. Это охлаждение может при быстром И. достигнуть весьма сильной степени, и потому охлаждение посредством И. часто применяется в обыденной жизни и промышленности. И. эфира, жидкого аммиака или др. веществ замораживают воду в особых холодильных машинах и добывают лед, И. воды охлаждают ее самое (см. соотв. статью). Испарением жидкой углекислоты, жидкого воздуха и других сжиженных газов (см.) можно достигнуть наиболее низких известных температур (до -200° Ц.).
2) Раньше предполагали, что электризование сосуда и жидкости, сопровождающее обыкновенно всякое быстрое И. жидкости, есть явление, имеющее органическую связь с И. (Гоген, Рике). Опыты Блэка и Калишера показали, однако, что электризация зависит исключительно от трения паров о стенки сосуда, и доказали также неправильность взглядов Пальмиери (1861), полагавшего, что конденсация жидкостей сопровождается электризацией. Электризация при И. достигает иногда весьма сильной степени. При выходе паров из железной бутыли с жидкой углекислотой бутыль электризуется до того сильно, что из нее скачут длинные искры (см. также Гидроэлектрическая машина Армстронга).
3) При И. жидкостей увлекаются парами частицы растворенных в жидкости веществ. Маргерит-Делашарлонни (1886) наблюдал эти явления и нашел их даже при низких температурах и довольно слабых растворах.
Теории И. Существуют две теории И. Одна, чисто механическая, создана Клаузиусом и разработана Стефаном, Ван дер Ваальсом и другими. Клаузиус следующими словами излагает свой взгляд на механизм И.: "если мы станем рассматривать поверхность жидкости, то я принимаю, что при весьма большом разнообразии в движениях молекул может иногда произойти, что случайное благоприятное совпадение поступательного, колебательного и вращательного движений оторвет молекулу от соседних к ней молекул с такой силой, что еще раньше, чем влекущие ее назад силы лишат ее ее скорости, она уже выйдет из сферы действия их и улетит дальше в пространство, находящееся над жидкостью". "Если мы представим себе, что это пространство ограничено и в начале пустое, то мало-помалу оно все более и более наполняется этими оторванными молекулами. Эти молекулы действуют в пространстве так же, как газ, т. е. ударяют при своем движении в стенки. Одну из таких стенок образует сама жидкость; но если о нее ударится молекула, то не отскочит тотчас, но удержится притяжением, которое испытывает от других молекул при приближении к ним, и присоединится к жидкости. Состояние равновесия наступит, очевидно, тогда, когда в пространстве над жидкостью будет столько молекул, что средним числом в единицу времени столько же молекул ударятся о поверхность жидкости и удержатся ею, сколько молекул от нее оторвется в пространство. Наступившее таким образом состояние равновесия не есть состояние покоя, в котором бы И. совершенно прекратилось, но состояние, в котором непрерывно происходят одинаково сильные, а следовательно, и уравновешивающие друг друга испарение и оседание. При испарении происходит совершенное отделение некоторых молекул от остальной массы, что требует преодоления противодействующих сил, а следовательно, и потерю тепла. Это и объясняет исчезновение так назыв. скрытой теплоты парообразования".
По вычислениям Стефана, пути, скорости и размеры частиц паров различных жидкостей приблизительно следующие (при 0°):
----------------------------------------------------------------------------------------------------------------------
|                      | Скорости в см в секунду | Путь x 108 см   | Диам. x 109 см  |
|--------------------------------------------------------------------------------------------------------------------|
| Эфир             | 30310                              | 220                  | 76                     |
|--------------------------------------------------------------------------------------------------------------------|
| Спирт            | 38290                              | 330                  | 52                     |
|--------------------------------------------------------------------------------------------------------------------|
| Хлороформ   | 23810                              | 240                  | 80                     |
----------------------------------------------------------------------------------------------------------------------
Другая теория (Рамзей и Юнг, Леман и др.) предполагает, что молекулы жидкости суть комплексы газовых молекул, что при нагревании часть комплексов разлагается, часть газовых молекул уходит в пространство, другая же часть остается в жидкости. Равновесие наступает, когда число входящих в жидкость и выходящих из нее газовых молекул одинаково. Вопрос о том, существует ли граница испарения, т. е. температура, при которой упругость пара равна нулю, не решен. Дюринг предполагает ее существование; Винкельман и Дюринг полагают, что она для воды лежит при -100° Ц. Демарсэ опытно искал этой температуры для металлов и нашел для кадмия 160°, для цинка 184°, для висмута 292°, для свинца и олова 360°. Эти температуры дают лишь границы, при которых И. еще заметно, но не дают в действительности границы И. Вопрос этот пока не решен; по теории Клаузиуса, граница И. наступит, когда живая сила частицы не будет в состояния вывести ее из сферы действия соседних частиц. Причина, по которой некоторые вещества легко испаряются, лишь когда переходят из жидкого состояния в газообразное, другие же способны прямо переходить из твердого состояния в пары, лежит не в особенностях природы этих веществ, как полагали раньше, а лишь в условиях температуры и давления, в которых они находятся. Оствальд объяснил эти явления, указав на то, что всякое вещество, могущее переходить из жидкого состояния в твердое, можно посредством уменьшения давления сделать нерасплавляющимся, и наоборот, сделать посредством увеличения давления плавкими такие вещества, которые обыкновенно переходят прямо из твердого состояния в газообразное. Температура плавления мало зависит от давления, температура кипения, наоборот, весьма сильно; поэтому уменьшением давления можно достигнуть того, что падение температуры кипения перегонит падение температуры затвердевания и тогда тело может сильно испаряться и кипеть ниже температуры своего плавления. При этих условиях вся теплота, которую мы приложим к веществу, будет тратиться на его И., и вещество, сколько бы мы его не нагревали, не достигнет точки плавления. Таким образом, свойства всех веществ можно сделать, в общем, близкоравными и аналогичными, если только поставить их в соответствующие им условия температуры и давления.
А. Гершун.
Испарение (физико-географ. и метеорол.). Значение И. как фактора климата и особенно его роль в круговороте воды на земном шаре вполне оправдывают попытки введения его в круг метеорологических наблюдений. Но выше уже было указано, как трудно получить сравнимые между собой данные. Следующая таблица показывает это еще яснее. Опыты были сделаны в Страфильде, Тергиссе, в Англии, причем испаритель II имел диам. 8 дм. и был помещен в тени, остальные на солнце; испаритель IV имел поверхность 36 кв. фт. (3,33 м2), глубина воды в нем 0,55 м и он был врыт в землю; VI и XIV имели диаметр 5 дм.: первый был помещен на 4 дм., второй на 1 фт. над землей. За 6 месяцев (апрель — сентябрь) теплого и сухого 1870 г. И. в мм:
--------------------------------------------------------------------------------------------------------------------------
| II           | 307        |                                                                                           |
|-----------------------------|                                                                                           |
| IV          | 458        | За 6 самых теплых дней 1870 г. средняя темпер. воды в   |
|-----------------------------| испарителях (t) — и И. (Е), причем И. из сосуда IV             |
| VI          | 916        | принято за 100                                                                   |
|-----------------------------|                                                                                           |
| XIV        | 1035      |                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------|
|                                                                               | t                     E             |
|-------------------------------------------------------------------------------------------------------------------------|
| IV                                                                           | 21,7                | 100          |
|-------------------------------------------------------------------------------------------------------------------------|
| Малые сосуды глиняные и войлочные                    | 24,7 до 26,6    | 156          |
|-------------------------------------------------------------------------------------------------------------------------|
| Малые сосуды металлические на 1 фт. над           | 29,3 до 29,8    | 220          |
| землей                                                                   |                       |                |
|-------------------------------------------------------------------------------------------------------------------------|
--------------------------------------------------------------------------------------------------------------------------
Здесь ясно видно влияние затенения (II сравнительно с остальными), величины сосуда (IV сравнительно с другими на солнце), высоты над поверхностью (VI и XIV) и даже материала сосуда: в менее теплоемких и более теплопроводящих металлических вода более нагревается на солнце, а потому и И. больше. Большая часть наблюдений в России сделана посредством весового эвапориметра Вильда, небольшого сосуда, помещенного в тени, в термометрической клетке (см. Температура воздуха); но и при таких условиях получаются очень различные величины, как показывает след. пример двух близких мест.
Е — среднее суточное И. в мм, t средняя t°, е'/е — относительная влажность, W — сила ветра в метрах в секунду.
--------------------------------------------------------------------------------------------------------------------------------------
|                    E           | t            e'/e     W       E           | t            e'/e        W       |
|                    |----------------------------------------------------------------------------------------------------------------|
|                    | Василевичи                                   | Пинск                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|
| июнь 1879   | 4,2        | 18,9       | 68       | 2,3      | 2,0        | 19,5       | 67         | 2,4      |
|-------------------------------------------------------------------------------------------------------------------------------------|
| август 1879 | 2,5         | 16,3       | 82       | 2,2      | 1,4        | 17,4       | 79         | 3,4      |
--------------------------------------------------------------------------------------------------------------------------------------
Казалось бы, по всем условиям следовало бы ожидать И. несколько большего в Пинске, чем в Василевичах, так как в первом температура выше, относительная влажность меньше и даже ветер сильнее. Обратный результат объясняется тем, что в Пинске наблюдения производились в саду с густой растительностью и сила ветра измерялась на значительной высоте над землей, где она гораздо больше, чем у поверхности. Той же причиной, т. е. уменьшением силы ветра лесной растительностью, нужно объяснить гораздо меньшее И. в лесу сравнительно с полем. Достаточно привести след. пример. В Баварии производились наблюдения в лесу и близ леса при совершенно одинаковых прочих условиях, те и другие в тени. И. за 7 теплых месяцев апрель — октябрь, в мм (кроме И. воды, наблюдалось еще И. насыщенной водой почвы):
------------------------------------------------------------------------------------------
|                              | Вода    | Почва    | Почва, покрыт.    |
|                              |            |              | сухими                |
|                              |            |              | листьями            |
|----------------------------------------------------------------------------------------|
| Вне леса               | 377      | 408        |                            |
|----------------------------------------------------------------------------------------|
| В лесу                   | 158      | 159        | 62                       |
|----------------------------------------------------------------------------------------|
| Отношение : 100    | 239      | 257        | 658                     |
------------------------------------------------------------------------------------------
т. е. в лесу с поверхности воды и почвы, насыщенной водой, но не покрытой сухими листьями, испаряется в 21/2 раза менее, чем вне леса, а с почвы, покрытой сухими листьями, в 61/2 раз менее. Весьма небольшой разностью температуры и относительной влажности в лесу и вне леса этих больших различий И. объяснить нельзя. То обстоятельство, что часто не обращали внимания на влияние величины сосуда и его установки на И., повело к неверным выводам относительно величины И. на земном шаре. Так, у Мори ("Физическая география моря") встречается утверждение, что с поверхности океана у экватора испаряется в год 15 англ. ф., т. е. около 4500 мм. Очевидно, от непродолжительных наблюдений над И. малыми сосудами на солнце, на берегу, поторопились заключить об И. с поверхности океана, забывая влияние его размера, вследствие чего и температура поверхности не может быть особенно высока, причем влажность воздуха над океаном также умеряет И. Не только с поверхности океанов, но и с меньших водоемов теплых стран далеко не испаряется такое количество воды. Так, наблюдения на запруде Амти близ Нагпура, в центральных провинциях Индии, дали за 6 сухих месяцев (декабрь — май) 1155 мм, т. е. в среднем за сутки 6,3, а в самом теплом и сухом месяце — мае — 9,4. В этот месяц средняя температура воздуха на 6° выше, a влажность с лишком на 40% меньше, чем на океанах под экватором. Сопоставляем данные об И. за месяц наибольшего И.; (т) означает, что испаритель помещен в тени; средняя за сутки в мм; В — наблюдения по весовому испарителю Вильда.
----------------------------------------------------------------------------------------------------------------------------------------
Водоем Амти                               | 9,4      | Нагпур, Индия, май                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|
|        | на р. Кук-Узяк                      | 6,7      |                                                                   |
|        |---------------------------------------------------------|                                                                   |
|        | на земле                              | 12,0    |                                                                   |
| В    |---------------------------------------------------------| Средняя Азия, Нукус, июль, 1875 г.            |
|        | на выс. 1 1/2 м                    | 16,3    |                                                                   |
|        |---------------------------------------------------------|                                                                   |
|        | (т.) в клетке                         | 10,4    |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|
Водоем3 м в диам. 0,8 глуб.         | 2,6      | Париж, Bureau Central, июнь                       |
| воды                                            |            |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|
| II                                                  | 2,7      |                                                                   |
|------------------------------------------------------------------|                                                                   |
| IV                                                 | 3,9      |                                                                   |
|------------------------------------------------------------------| Страфильд, Тёргисс, Англия, июль, 1870 г. |
| VI                                                 | 7,9      |                                                                   |
|------------------------------------------------------------------|                                                                   |
| XIV                                               | 8,4      |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Пруд                                            | 3,5      |                                                                   |
|------------------------------------------------------------------| Павловск, июнь, 1881, 82 г.                        |
| В (т.)                                            | 2,5      |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Пруд                                            | 3,6      |                                                                   |
|------------------------------------------------------------------| Лесной институт, июль и август, 1893 г.     |
| В (т.)                                            | 1,2      |                                                                   |
----------------------------------------------------------------------------------------------------------------------------------------
Очень важно не терять из виду различия между возможным И. или испаряемостью, иначе сказать, И. как фактором климата и действительным И. На морях то и другое возрастает параллельно, по мере повышения температуры воздуха и поверхности моря и уменьшения относительной влажности. То и другое вообще увеличивается от зимы к лету и уменьшается от лета к зиме. Причина параллельного хода обоих явлений та, что всегда имеется материал для И. — морская вода. На материках и островах дело происходит несколько иначе; здесь 4 среды участвуют в И. 1) снег и лед, 2) внутренние воды, 3) почва и вообще поверхность суши, 4) растения. Если запас влаги в виде осадков достаточен, то и здесь возможное и действительное И. возрастает и уменьшается одновременно и различие между зимой и летом больше, чем на море, как потому, что температура еще более разнится на материках, чем на океане, так и потому, что лето при этих условиях — время деятельности растительности и И. растений — в значительной степени явление физиологическое. Но совсем иное происходит там, где недостает осадков. Там, по мере того как возрастает температура, действительное И. отстает от возможного. Последнее особенно велико вследствие сухости воздуха, первое же мало по след. причинам: 1) по мере увеличения температуры и сухости воздуха все уменьшается площадь внутренних вод: реки, разливавшиеся во время половодья, входят в берега, суживаются, а при большой сухости превращаются в ряд плесов, связанных подземными водотоками, наконец высыхают; озера тоже уменьшаются и наконец высыхают; 2) с поверхности почвы и вообще суши также испаряется все менее и менее воды, в проницаемых почвах она сохраняется лишь на больших глубинах, а глинистые почвы упорно удерживают остатки влаги; 3) по мере увеличения сухости воздуха и почвы растительность замирает, испаряя все менее воды. Там, где сухость воздуха при высокой температуре — явление обычное, растения приспособились к ней, и их организация такова, что они испаряют возможно мало влаги (см. География растений). Страны с наиболее теплым и сухим летом, напр. Сахара, имеют, вероятно, наименьшее действительное И., так как нечему испаряться: поверхность почвы суха, внутренних вод и растительности нет. Запас водяных паров в воздухе происходит не от И. на месте, а приносится извне ветрами и диффузией. Вместе с тем возможное И. очень велико. Но стоит выпасть обильному дождю, как условия резко изменяются: испаряет и влажная почва, и внутренние воды (озера, лужи), и растительность, быстро появляющаяся за одним или несколькими дождями; в то же время возможное испарение уменьшается вследствие понижения температуры и увеличения относительной влажности. Наибольшее действительное испарение происходит там, где высокая температура сопровождается обильными осадками и где притом дожди чередуются с солнечным освещением. Это бывает во многих тропических странах в дождливое время года (обыкновенно в летние месяцы). То же и в некоторых странах средних широт, где лето и тепло, и вместе с тем дождливо, напр. в юго-зап. Закавказье, на Ю.В., Соединенных Штатах, Японии, Китае. Эти страны отличаются роскошной растительностью, которая зависит от соединения тепла и влаги и, в свою очередь, способствует обильному испарению. При таких условиях с данной поверхности материка испаряется, конечно, более воды, чем с такой же поверхности самого теплого океана.
А. Воейков.
Испарение воды растениями. — С поверхности всех воздушных частей растения постоянно выделяется в атмосферу водяной пар. Известно, что растение, лишенное поливки, быстро завядает. Увядание есть следствие потери воды через И. Для более или менее точного определения количества испаряемой растением воды существует несколько способов. I способ. Определяют количество испаряемой воды из потери в весе прибора с растением. Способ этот впервые был употреблен Гельзом (Hales) еще в начале прошлого столетия. Горшок с растением помещают в цинковый сосуд с герметически закрывающейся крышкой. В крышке три отверстия: через одно проходит стебель растения (остающейся промежуток тщательно заливают воском), в два других вставлены стеклянные трубочки, из коих одна служит для поливки почвы, а другая, вытянутая в капилляр, — для сообщения воздуха прибора с наружной атмосферой. Путем последовательных взвешиваний определяют потерю в весе прибора с растением (потеря зависит исключительно от И. воды растением). Поставив прибор на самопишущие весы (эвапориметр Ришара), получаем непрерывную запись хода И. из часа в час в течение целой недели. — II способ. Определяют количество поглощенной растением воды и заключают отсюда о количестве испарившейся [Опыт показал, что можно принять без большой погрешности, что растение столько же испаряет воды, сколько поглощает.]. Для этой цели предложено несколько приборов, между прочими Колем (Kohl). Главная часть его прибора состоит из вертикальной, довольно широкой стеклянной трубки, наполненной водой и плотно закрытой сверху и снизу пробками. Сверху в трубку эту вводят корни испытуемого растения, а снизу сообщают ее с длинной капиллярной трубочкой, также наполненной водой. По мере того как растение испаряет воду, оно поглощает ее из прибора и водяной столбик в капиллярной трубочке укорачивается; определяя длину его, заключают о количестве всосанной и испарившейся воды. — III способ. Определяют одновременно количество поглощенной и выделенной в парообразном состоянии воды. Для этого пользуются прибором Веска (Vesque), состоящим из U-образной трубки, одно колено которой широкое, а другое — узкое. В широкое колено вводят растение, удерживаемое хорошо пригнанной каучуковой пробкой. Прибор наполняют водой. Взвешиваниями определяют количество испаряемой воды, а по перемещению воды в узком колене судят о количестве поглощенной воды. Количество испаряемой растением воды весьма значительно. За весь период вегетации (июнь — октябрь), по определениям Вольни (Vollny), испарили:
------------------------------------------------------------------------------------------------
|                            | Кукуруза    | Овес   | Горох   | Горчица    |
|----------------------------------------------------------------------------------------------|
| Фунтов воды       | 27              | 17        | 10         | 12             |
------------------------------------------------------------------------------------------------
Перечисляя эти данные на десятину, засеянную кукурузой, получим, что десятина кукурузы испаряет в продолжение всего периода вегетации, круглым счетом 200000 п., или 300000 вед. воды (Тимирязев). Сравнивая эти данные с урожаем, точнее — с количеством образовавшегося в тот же период сухого вещества, Вольни нашел, что на один грамм последнего приходятся следующие количества испарившейся воды: кукуруза — 233 гр., овес — 665 гр., горох — 416 гр., горчица — 843 гр. Для наших злаков можно принять в среднем (по Гельригелю), что на каждую весовую единицу сухого вещества они испаряют 300 единиц воды. Поверхность растения испаряет, однако, менее, нежели равная ей свободная поверхность воды, в среднем, по Унгеру, — в 3 раза менее, по Гартигу — разница еще больше. Вот данные сравнительных опытов Гартига:
----------------------------------------------------------------------------------------------------------------------
| Поверхность воды в 1 кв. метр испаряла в 24 часа    | 2000 куб. см воды.   |
|--------------------------------------------------------------------------------------------------------------------|
| Поверхность листьев бука в 1 кв. м испаряла в 24     | 210 куб. см воды.    |
| часа                                                                          |                                |
|--------------------------------------------------------------------------------------------------------------------|
| Поверхность игл ели в 1 кв. метр испаряла в 24        | 200 куб. см воды.    |
| часа                                                                          |                                |
|--------------------------------------------------------------------------------------------------------------------|
| Поверхность листьев дуба в 1 кв. м испаряла в 24    | 280 куб. см воды.    |
| часа                                                                          |                                |
----------------------------------------------------------------------------------------------------------------------
При оценке опытов над И. воды растениями необходимо, однако, иметь в виду: производились ли они над целыми растениями, ветвями или отдельными листьями. По опытам Крутицкого, ветвь Cyssus antharcticus с 6 листьями испарила в сутки 10,8 куб. стм. воды; один лист Cyssus antharcticus испарил в сутки 10,6 куб. стм.; восьмилетняя ветвь Quercus sp. с 180 листьями испарила в сутки 28,8 куб. стм.; один лист Quercus sp. испарил в сутки 3,2 куб. стм.; отсюда ясно, что данные, полученные для отдельных отрезанных листьев, нельзя прямо перечислять на целые растения [Именно такого рода ошибку сделали Унгер и Лооз и получили величину испарения огромную и совершенно не соответствующую истинной.]. Энергия испарения находится в зависимости, прежде всего, — от породы растения: различные растения при совершенно одинаковых условиях испаряют весьма различное количество воды. Затем от возраста органа: листья испаряют всего сильнее в период распускания; по мере их развития И. сначала ослабевает, затем снова возрастает, достигает (в период окончательного развития устьиц) второго максимума, но меньшего, чем первый, и потом опять падает. Огромное также влияние на процесс И. оказывает внешняя форма растений и их внутренняя организация. Растениями выработан целый ряд разнообразных приспособлений, дающих им возможность регулировать И., а главным образом, защищаться от И. чрезмерного, грозящего гибелью (подробности об этом см. в соч. Кернера). Чем толще кутикула (надкожица), покрывающая растение, и чем более она пропитана воскообразными веществами [Вещества эти делают кутикулу несмачиваемой и непроницаемой для воды, подобно непромокаемой ткани или клеенке.], тем больше задерживает она И. Оттого листья многих теневых (лесных) растений, мягкие и нежные, с тонкой кутикулой, испаряют гораздо больше и вянут быстрее, нежели кожистые, покрытые толстой кутикулой листья так назыв. вечнозеленых растений. По той же причине многие кактусы, агавы, алоэ испаряют весьма мало и остаются мясистыми и сочными, несмотря на то, что растут в странах сухих и жарких. Над яблоком весьма легко произвести опыт, наглядно убеждающий в важности кутикулярного покрова для растения; стоит только яблоко лишить этого покрова, содрав с него кожицу, и оно быстро станет терять воду через И. и засохнет. Такую же защитную роль играет пробковая ткань, облекающая часто различные органы растений. Между прочим, тонким слоем пробки покрыты картофельные клубни. Если срезать этот слой, то с ними случится то же, что и с яблоком. Весьма распространенными, превосходно и притом совершенно автоматически действующими, регуляторами процесса И. являются так назыв. устьица растений. Их число и распределение различно в зависимости от потребностей растения. Они то открываются, давая выход водяным парам, то — когда растению грозит недостаток в воде — сами собой замыкаются, предохраняя его от убыточной потери воды. Большее число устьиц на нижней поверхности листа вместе с обширностью здесь межклеточных пространств обусловливают большую энергию И. нижней стороны листа в сравнении с верхней (в среднем отношение 2,4:1, но бывает и 4,3:1), что Гарро (Garreau) старался доказать и путем прямого опыта. На И. влияют еще и другие внутренние причины. Что касается зависимости И. воды от температуры окружающего воздуха, то установлено, что испарение возрастает с температурой, но вообще воздействие температуры мало расследовано. Гораздо лучше известно влияние света: именно — чем интенсивнее свет, тем сильнее И. Три молодых растеньица (кукурузы) весом в 1,6 гр. испарили воды в 1 час: на солнечном свете 198 мгр., на рассеянном дневном свете — 68 мгр., в темноте — 27 мгр. Значение имеет не только количество, но и качество света: наибольшее действие оказывают лучи синие и фиолетовые. Некоторые принимают, что на процесс И. воды растениями влияют те лучи, которые поглощаются хлорофиллом (зеленым веществом листа), следовательно, служащие также для разложения углекислоты. Что степень влажности окружающего воздуха имеет большое значение, понятно само собой, но не остаются без влияния и влажность и состав почвы. Наконец, и ветер, даже слабый сравнительно (напр. в опытах Визнера — 3 м в секунду), весьма заметно влияет, именно усиливает И. Несмотря на большое число исследований, посвященных изучению процесса И. воды растениями, окончательное суждение о нем и о его значении для растения еще не может быть дано. В то время как одни ученые (Сакс и его последователи) рассматривают И. "как сложнейшую функцию растений, в которой не только отражаются внешние влияния, но и все процессы, происходящие внутри растения" (Фаминцын), для других это — "процесс физический, подчиняющийся вполне определенным и понятным нам законам" и "в тех размерах, в каких он обыкновенно совершается в природе, он может быть скорее рассматриваем как неизбежное физическое зло, чем как необходимое физиологическое отправление" (Тимирязев). Ср. Фаминцын, "Обмен веществ и превращение энергии в растениях" (1883); Палладин, "Физиология растений" (1891); Тимирязев, "Земледелие и физиология растений. I. Борьба растения с засухой" (1893); Frank, "Lehrbuch der Botanik" (1 т., 1892); Van-Tieghem, "Traité de Botanique" (1 т., 1891); Kerner-von-Marilaun, "Pflanzenleben" (1 т., 1888).
Г. Надсон.

Смотреть больше слов в «Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона»

ИСПАРИНА →← ИСПАНЬОЛА

Смотреть что такое ИСПАРЕНИЕ в других словарях:

ИСПАРЕНИЕ

ИСПАРЕНИЕ, -я, ср. 1. см. испарить, -ся. 2. мн. Испаряющееся вещество.Вредные испарения. Болотные испарения.

ИСПАРЕНИЕ

испарение ср. 1) Процесс действия по знач. глаг.: испарять, испарить, испаряться (1,2), испариться. 2) Испаряющееся вещество, пар.

ИСПАРЕНИЕ

испарение с.1. evaporation; (выделение) exhalation 2. мн. fumes; (вредные пары) miasma

ИСПАРЕНИЕ

испарение парообразование, эвапорация, выкипание, вапоризация, миазм, улетучивание, транспирация Словарь русских синонимов. испарение сущ., кол-во синонимов: 11 • вапорация (1) • вапоризация (2) • выкипание (2) • выпаривание (11) • испарина (6) • миазм (5) • самоиспарение (1) • транспирация (2) • улетучивание (3) • эванотранспирация (1) • эвапорация (2) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация... смотреть

ИСПАРЕНИЕ

Испарение — явление перехода твердых и жидких тел в соответствующее им газообразное состояние — в пары, переход, не сопровождающийся разложением молеку... смотреть

ИСПАРЕНИЕ

(парообразование), переход в-ва из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода. И. твердого тела наз. <i> сублимацией</i> (возгонкой), а парообразование в объеме жидкости -<i> кипением.</i> Обычно под И. понимают парообразование на своб. пов-сти жидкости в результате теплового движения ее молекул при т-ре ниже точки кипения, соответствующей давлению газовой среды, расположенной над указанной пов-стью. При этом молекулы, обладающие достаточно большой кинетич. энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются. И. - эндотермич. процесс, при к-ром поглощается теплота фазового перехода - теплота И., затрачиваемая на преодоление сил мол. сцепления в жидкой фазе и на работу расширения при превращ. жидкости в пар. Уд. теплоту И. относят к 1 молю жидкости (молярная теплота И., Дж/моль) или к единице ее массы (массовая теплота И., Дж/кг). Скорость И. определяется поверхностной плотностью потока пара j<sub> п</sub>, проникающего за единицу времени в газовую фазу с единицы пов-сти жидкости [в моль/(с. м <sup>2</sup>) или кг/(с. м <sup>2</sup>)]. Наиб. значение j<sub> п</sub><i></i> достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды И. замедляется вследствие того, что скорость удаления молекул пара от пов-сти жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у пов-сти раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в осн. массе парогазовой смеси. Нарушение термодинамич. равновесия между жидкостью и паром, содержащимся в парогазовой смеси, объясняется скачком т-ры на границе раздела фаз. Однако обычно этим скачком можно пренебречь и принимать, что парциальное давление и концентрация пара у пов-сти раздела фаз соответствуют их значениям для насыщ.пара, имеющего т-ру пов-сти жидкости. Если жидкость и парогазовая смесь неподвижны и влияние своб. конвекции в них незначительно, удаление образовавшегося при И. пара от пов-сти жидкости в газовую среду происходит в осн. в результате мол. диффузии и появления вызываемого последней при полупроницаемой (непроницаемой для газа) пов-сти раздела фаз массового (т. наз. стефановского) потока парогазовой смеси, направленного от пов-сти жидкости в газовую среду (см. <i>Диффузия</i>). <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/624f5381-48b3-40fa-b645-6f6217af4530" alt="ИСПАРЕНИЕ фото" align="absmiddle" class="responsive-img img-responsive" title="ИСПАРЕНИЕ фото"> <br> Рис. Распределение т-р при разл. режимах испарительного охлаждения жидкости. Потоки теплоты направлены: а - от жидкой фазы к пов-сти испарения в газовую фазу; б - от жидкой фазы только к пов-сти испарения; в - к пов-сти испарения со стороны обеих фаз; г - к пов-сти испарения только со стороны газовой фазы. <p> Эффекты баро- и термодиффузии при инженерных расчетах обычно не учитываются, но влияние термодиффузии м. б. существенным при высокой неоднородности парогазовой смеси (при большом различии мол. масс ее компонентов) и значит. градиентах т-р. При движении одной или обеих фаз относительно пов-сти их раздела возрастает роль конвективного переноса в-ва и энергии в парогазовой смеси и жидкости. При отсутствии подвода энергии к системе жидкость-газ от внеш. источников теплота И. может подводиться к поверхностному слою жидкости со стороны одной или обеих фаз. В отличие от результирующего потока в-ва, всегда направленного при И. от жидкости в газовую среду, потоки теплоты могут иметь разные направления в зависимости от соотношений т-р осн. массы жидкости t<sub> ж</sub>, границы раздела фаз t<sub> гр</sub> и газовой среды t<sub> г</sub> (см. рис.). При контакте определенного кол-ва жидкости с полубесконечным объемом или омывающим ее пов-сть потоком газовой среды и при т-ре жидкости, более высокой, чем т-ра газа (t<sub> ж</sub> &gt; t<sub> гр</sub><i> &gt;</i>t<sub> г</sub>), возникает поток теплоты со стороны жидкости к пов-сти раздела фаз: (Q<sub> жг</sub> = Q<sub> ж</sub><i> Ч</i>Q<sub> и</sub>,<i></i> где Q<sub> и </sub> -теплота И., Q<sub> жг </sub>- кол-во теплоты, передаваемой от жидкости газовой среде. При этом жидкость охлаждается (т. наз. испарительное охлаждение). Если в результате такого охлаждения достигается равенство t<sub> гр</sub> = t<sub> г</sub>,<i></i> теплоотдача от жидкости к газу прекращается (Q<sub> жг</sub><i></i>= 0) и вся теплота, подводимая со стороны жидкости к пов-сти раздела, затрачивается на И. (Q<sub> ж</sub><i></i>= Q<sub> и</sub>). В случае газовой среды, не насыщенной паром, парциальное давление последнего у пов-сти раздела фаз и при Q<sub> ж</sub> = Q<sub> и</sub> остается более высоким, чем в осн. массе газа, вследствие чего И. и испарительное охлаждение жидкости не прекращаются и t<sub> гр</sub> становится ниже t<sub> ж</sub> и t<sub> г</sub>.При этом теплота подводится к пов-сти раздела от обеих фаз до тех пор, пока в результате понижения t<sub> ж</sub> достигается равенство t<sub> гр</sub> = t<sub> ж</sub> и поток теплоты со стороны жидкости прекращается, а со стороны газовой среды Q<sub> гж</sub><i></i> становится равным Q<sub> и</sub>.Дальнейшее И. жидкости происходит при постоянной т-ре t<sub> м</sub> = t<sub> ж</sub> = t<sub> гр</sub>, к-рую наз. пределом охлаждения жидкости при испарительном охлаждении или т-рой мокрого термометра (т. к. ее показывает мокрый термометр психрометра). Значение t<sub> м</sub> зависит от параметров парогазовой среды и условий тепло- и массообмена между жидкой и газовой фазами. Если жидкость и газовая среда, имеющие разл. т-ры, находятся в ограниченном объеме, не получающем энергию извне и не отдающем ее наружу, И. происходит до тех пор, пока между двумя фазами не наступает термодинамич. равновесие, при к-ром т-ры обеих фаз уравниваются при неизменной энтальпии системы, и газовая фаза насыщается паром при т-ре системы t<sub> ад</sub>. Последняя, наз. температурой адиабатич. насыщения газа, определяется только начальными параметрами обеих фаз и не зависит от условий тепло- и массообмена. Скорость изотермич. И. [в кг/(м <sup>2</sup>.с)] при однонаправленной диффузии пара в расположенный над пов-стью жидкости неподвижный слой бинарной парогазовой смеси толщиной d (в м) м. б. найдена по ф-ле Стефана: j<sub> п</sub><i> =</i>(<i>D/R</i><sub> п</sub>T)(p/d) ln [(p - р <sub> п, гр</sub>)/(<i> р Ч р</i><sub> п</sub>)]<sup>-</sup><sup>1</sup><i></i>,<i></i> где D - коэф. взаимной диффузии, м <sup>2</sup>/с; R<sub> п </sub>- газовая постоянная пара, Дж/кг (кг. К) или м <sup>2</sup>/(с <sup>2</sup>.к); T - т-ра смеси, К; <i> р -</i> давление парогазовой смеси, Па; р <sub> п, гр</sub>, р <sub> п <i>&lt; </i></sub>-&gt; парциальные давления пара у пов-сти раздела и на наружной границе слоя смеси, Па. В общем случае (движущиеся жидкость и газ, неизотермич. условия) в прилегающем к пов-сти раздела фаз пограничном слое жидкости переносу импульса сопутствует перенос теплоты, а в пограничном слое газа (парогазовой смеси) происходят взаимосвязанные тепло- и массоперенос. При этом для расчета скорости И. используют эксперим. коэффициенты тепло- и массоотдачи, а в относительно более простых случаях - приближенные методы численных решений системы дифференц. ур-ний для сопряженных пограничных слоев газовой и жидкой фаз. Интенсивность массообмена при И. зависит от разности хим. потенциалов пара у пов-сти раздела и в осн. массе парогазовой смеси. Однако если баро- и термодиффузией можно пренебречь, разность хим. потенциалов заменяют разностью парциальных давлений или концентраций пара и принимают: j<sub> п</sub><i></i>= b<sub>p</sub> (р <sub> п, гр</sub><i></i>-<i> р</i><sub> п, осн</sub>) = b<sub>p</sub> р(у <sub> п, гр</sub> - у <sub> п, осн</sub>) или j<sub> п</sub> = b<sub>c</sub>(c<sub> п, гр </sub>- с <sub> п, осн</sub>), где b<sub>p</sub>, b<sub>c</sub> - коэфф. массоотдачи, p - давление смеси, р <sub> п <i>&lt; </i></sub>-&gt; парциальное давление пара, y<sub> п </sub><i>= p</i><sub> п</sub>/<i>p -</i> молярная концентрация пара, c<sub> п</sub><i></i>= r<sub> п</sub>/r<i> -</i> массовая концентрация пара, r<sub> п</sub>, r - локальные плотности пара и смеси; индексы означают: "гр" - у границы раздела фаз, "осн" - в осн. массе смеси. Плотность потока теплоты, отдаваемой при И. жидкостью, составляет [в Дж/(м <sup>2</sup>.с)]: q= a<sub> ж</sub>(t<sub> ж</sub> - t<sub> гр</sub>) = rj<sub> п</sub> + a<sub> г</sub> (t<sub> гр</sub> Ч t<sub> г</sub>), где a<sub> ж</sub>, a<sub> г</sub> - коэф. теплоотдачи со стороны жидкости и газа, Вт/(м <sup>2</sup>.К); r - теплота И., Дж/кг. При очень малых радиусах кривизны пов-сти И. (напр., при И. мелких капель жидкости) учитывается влияние поверхностного натяжения жидкости, приводящего к тому, что равновесное давление пара над пов-стью раздела выше давления насыщ. пара той же жидкости над плоской пов-стью. Если t<sub> гр</sub> ~ t<sub> ж</sub>, то при расчете И. могут приниматься во внимание только тепло- и массообмен в газовой фазе. При относительно малой интенсивности массообмена приближенно справедлива аналогия между процессами тепло- и массопереноса, из к-рой следует: Nu/Nu<sub>0</sub> = Sh*/Sh<sub>0</sub>, где Nu = a<sub> г </sub>l/l<sub> г</sub> - число Нуссельта, l - характерный размер пов-сти И., l<sub> г</sub> - коэф. теплопроводности парогазовой смеси, Sh* = b<sub>p</sub>y<sub> г, гр</sub><i>l/D</i><sub>p</sub> = b<sub>c</sub>c<sub> г, гр</sub><i>l/D -</i> число Шервуда для диффузионной составляющей потока пара, D<sub>p</sub> = <i>D/R</i><sub> п</sub><i>T -</i> коэф. диффузии, отнесенный к градиенту парциального давления пара. Значения b<sub>p</sub> и b<sub> с</sub> вычисляют по приведенным выше соотношениям, числа Nu<sub>0</sub> и Sh<sub>0</sub> соответствуют j<sub> п</sub><i></i>: 0 и могут определяться по данным для раздельно происходящих процессов тепло- и массообмена. Число Sh<sub>0</sub> для суммарного (диффузионного и конвективного) потока пара находят делением Sh* на молярную (y<sub> г, гр</sub>)<i></i> или массовую (с <sub> г, гр</sub>) концентрацию газа у пов-сти раздела в зависимости от того, к какой движущей силе массообмена отнесен коэф. b. Ур-ния подобия для Nu и Sh* при И. включают кроме обычных критериев (чисел Рейнольдса Re, Архимеда Аr, Прандтля Рr или Шмидта Sc и геом. параметров) параметры, учитывающие влияние поперечного потока пара и степени неоднородности парогазовой смеси (отношения мол. масс или газовых постоянных ее компонентов) на профили, скорости, т-ры или концентраций в сечении пограничного слоя. При малых j<sub> п</sub>, не нарушающих существенно гидродинамич. режим движения парогазовой смеси (напр., при испарении воды в атм. воздух) и подобие граничных условий полей т-р и концентраций, влияние дополнит. аргументов в ур-ниях подобия незначительно и им можно пренебречь, принимая, что Nu = Sh. При И. многокомпонентных смесей указанные закономерности сильно усложняются. При этом теплоты И. компонентов смеси и составы жидкой и парогазовой фаз, находящихся между собой в равновесии, различны и зависят от т-ры. При И. бинарной жидкой смеси образующаяся смесь паров относительно богаче более летучим компонентом, исключая только азеотропные смеси, испаряющиеся в точках экстремума (максимума или минимума) кривых состояния как чистая жидкость. Общее кол-во испаряющейся жидкости увеличивается с возрастанием пов-сти контакта жидкой и газовой фаз, поэтому конструкции аппаратов, в к-рых происходит И., предусматривают увеличение пов-сти И. путем создания большого зеркала жидкости, раздробления ее на струи и капли или образования тонких пленок, стекающих по пов-сти насадок. Возрастание интенсивности тепло- и массообмена при И. достигается также повышением скорости газовой среды относительно пов-сти жидкости. Однако увеличение этой скорости не должно приводить к чрезмерному уносу жидкости газовой средой и значит. повышению гидравлич. сопротивления аппарата. И. широко применяется в пром. практике для очистки в-в, сушки материалов, разделения жидких смесей, кондиционирования воздуха. Испарительное охлаждение воды используется в оборотных системах водоснабжения предприятий. См. также <i> Выпаривание, Газов увлажнение, Градирни, Сушка.</i> <i> Лит.:</i> Берман Л. Д., Испарительное охлаждение циркуляционной воды, 2 изд., М.-Л., 1957; Фукс Н. А., Испарение и рост капель в газообразной среде, М., 1958; Берд Р., Стьюарт В., Лайтфут Е., Явления переноса, пер. с англ., М., 1974; Берман Л. Д., "Теоретические основы хим. технологии", 1974, т.8, № 6, с. 811-22; Шервуд Т., Пигфорд Р., Уилки Ч., Массопередача, пер. с англ., М., 1982. <i> Л. Д. Берман.</i> </p><p><br></p><b>Синонимы</b>: <div class="tags_list"> вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация </div><br><br>... смотреть

ИСПАРЕНИЕ

переход в-ва из жидкого или твёрдого агрегатного состояния в газообразное (пар). Обычно под И. понимают переход жидкости в пар, происходящий на... смотреть

ИСПАРЕНИЕ

испаре́ние поступление в атмосферу водяного пара; происходит при отрыве молекул с поверхности воды, капель и кристаллов в воздухе, снега, льда, влаж... смотреть

ИСПАРЕНИЕ

Испаре́ние - поступление в атмосферу водяного пара; происходит при отрыве молекул с поверхности воды, капель и кристаллов в воздухе, снега, льда, влажн... смотреть

ИСПАРЕНИЕ

, переход в-ва из жидкого или твёрдого агрегатного состояния в газообразное. Обычно под И. понимают превращение воды в пар. И. возможно при любой темп-ре испаряющей поверхности, но с её повышением ускоряется. И. воды с поверхности почвы зависит от метеорологич. условий, влажности почвы, гранулометрич. состава и степени её окультуренности, мощности растит. покрова. На И. воды растениями <i>(транспирацию) </i>влияют как погодные, так и биол. факторы (особенности регулирующих систем). И. воды посевами или насаждениями складывается из кол-ва влаги, испарившейся с поверхности почвы и выделенной растениями (т. н. суммарное И.). Суммарное И. может достигать 600 — 700 т воды с 1 га за декаду (при дефиците влажности воздуха более 30 гПа, обильном увлажнении почвы и площади листовой поверхности в 30 — 40 тыс. м<sup>2</sup>/га). На землях, не требующих осушения, И. воды из почвы необходимо сводить к минимуму, что достигается правильной и своевременной обработкой почвы, борьбой с сорняками. И. изучается в лабораторных и полевых условиях станциями Госкомгидромета СССР. И. с поверхности воды и почвы измеряется приборами — испарителями и выражается в мм слоя испарившейся воды. Данные об И. используют для разработки агротехнич. приёмов , установления сроков и норм полива, районирования разл. по засухоустойчивости сортов с.-х. культур и т. п. <br><b>Синонимы</b>: <div class="tags_list"> вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация </div><br><br>... смотреть

ИСПАРЕНИЕ

⊲ ИСПАРЕ́НИЕ (из-), я, ср.Выделение влаги в виде пара (ср. ср.-лат. evaporatio).Не вымазывайте голов их и незалѣплевайте потовых поров пудрою и помадо... смотреть

ИСПАРЕНИЕ

-я, ср. 1. Действие по знач. глаг. испарить—испарять; действие и состояние по глаг. испариться—испаряться (в 1 знач.). Скорость испарения. 2. обычно... смотреть

ИСПАРЕНИЕ

Испарение эвапотранспирация - переход влаги в атмосферу биотической среды при транспирации растений, потении животных, дыхании тех и других, а также ... смотреть

ИСПАРЕНИЕ

• испарение n english: evaporation deutsch: Verdampfung f français: evaporation f Синонимы: вапорация, вапоризация, выкипание, выпаривание, ис... смотреть

ИСПАРЕНИЕ

boil-off, volatilization, transpiration, vaporation, vaporization* * *испаре́ние с.vaporization, evaporation, volatilizationпоте́рянный на испаре́ние —... смотреть

ИСПАРЕНИЕ

[evaporation] — переход вещества из жидкого или твердого состояния в газообразное — пар. Испарение твердых веществ называется возгонкой или сублимацией. Вследствие теплового движения молекул испарение возможно при любой температуре, но с ее возрастанием растет интенсивность теплового движения молекул и скорость испарения увеличивается. Испарение относится к фазовым переходам 1-го рода, которые характеризуются теплотой фазового перехода ≠ 0. При процессе, обратном испарению, т.е. при образовании из пара жидкой фазы (конденсации) выделяется теплота испарения. <br> Испарение применяется как способ рафинирования или разделения металлов и сплавов, в частности ЦМ. Испарение лежит в основе пароэнергетики, работы холодных и других установок, а также всех процессов сушки материалов.<br><br>... смотреть

ИСПАРЕНИЕ

1) Орфографическая запись слова: испарение2) Ударение в слове: испар`ение3) Деление слова на слоги (перенос слова): испарение4) Фонетическая транскрипц... смотреть

ИСПАРЕНИЕ

— переход вещества из жидкого или твердого состояния в газообразное (пар), происходящий при любой температуре; зависит от температуры испаряющей поверхности, скорости ветра и влажности воздуха, а в недрах земли от земной температуры и гидростатического давления. Различают: испарения с поверхности суши (ландшафта) и испаряемость — с водной поверхности. <br><p class="src"><em><span itemprop="source">Геологический словарь: в 2-х томах. — М.: Недра</span>.<span itemprop="author">Под редакцией К. Н. Паффенгольца и др.</span>.<span itemprop="source-date">1978</span>.</em></p><b>Синонимы</b>: <div class="tags_list"> вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация </div><br><br>... смотреть

ИСПАРЕНИЕ

с1) Verdunstung f; Verdampfung f (горячее) 2) мн. ч. испарения (пары) Dämpfe m pl, Ausdünstungen f pl, Dünste m pl Синонимы: вапорация, вапоризация, в... смотреть

ИСПАРЕНИЕ

1) &LT;engin.&GT; bleeding2) evaporating3) evaporation4) fume5) fumes6) fuming7) transpiration8) vaporization9) vaporizing10) vaporring– испарение в ва... смотреть

ИСПАРЕНИЕ

с.1) (действие) évaporation f, sublimation f 2) мн. испарения — vapeurs f pl, exhalaisons f pl, émanations f plСинонимы: вапорация, вапоризация, выкип... смотреть

ИСПАРЕНИЕ

1) (действ.) парування, випаровування, випарування, (улетучивание) вивітрювання, вивітрення; 2) (пар) випар (-ру), випарина, випари (-рів), опар (-ру) и опар (- ри), відпар (-ру), (удушливое) сопух (-ху). [Праця на фабриках і заводах часто серед отрути їх випарів (Касян.). З политої мокрої мостової піднімавсь опар (Н.-Лев.). Перше ішли дощі, далі настала жара - пішла опар (Звиног.). Сонце пригріло, потекли річки, з землі аж відпар пішов (Свидн.). Повітря задушливе, загусле від нафтового сопуху (Франко)]. Вредные -ния - отруйні випари. Потные -ния - випоти (-тів), випари поту. Удушающие -ния - задушливі випари. -ния человеческого тела - людські випоти.... смотреть

ИСПАРЕНИЕ

переход вещества из жидкого или твердого состояния в газообразное (пар), происходящий при любой температуре в отличие от кипения, имеющего место для данной жидкости (при данном давлении) при вполне определенной температуре. Путем И. пополняется запас водяного пара в атмосфере, уменьшающийся вследствие конденсации и выпадения осадков. И. воды зависит от температуры испаряющейся поверхности, скорости ветра и влажности воздуха.<br><b>Синонимы</b>: <div class="tags_list"> вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация </div><br><br>... смотреть

ИСПАРЕНИЕ

ИСПАРЕНИЕ, процесс превращения жидкости или твердого тела в газообразное состояние или в пар. Противоположным ему является процесс КОНДЕНСАЦИИ. При исп... смотреть

ИСПАРЕНИЕ

с.evaporation, vaporization- испарение первичных чёрных дыр- испарение чёрных дыр- адиабатическое испарение- взрывное испарение- испарение в вакуум- ис... смотреть

ИСПАРЕНИЕ

переход вещества из жидкого состояния в пар; в отличие от кипения, испарение происходит с поверхности жидкости при любой температуре, пока пар над жидкостью является ненасыщенным. Испарение возможно и с поверхности твердого тела (льда, кристалликов йода, нафталина и др.). тогда этот процесс называется возгонкой или сублимацией. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация... смотреть

ИСПАРЕНИЕ

с. 1) (действие) évaporation f, sublimation f 2) мн. испарения — vapeurs f pl, exhalaisons f pl, émanations f pl

ИСПАРЕНИЕ

испаре́ние см. Транспирация. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) ... смотреть

ИСПАРЕНИЕ

с vaporização f, evaporação f; мн испарения vapores mpl; emanações fpl, exalações fpl, (летучих веществ) fumos mpl Синонимы: вапорация, вапоризация, в... смотреть

ИСПАРЕНИЕ

Rzeczownik испарение n parowanie odczas. n ulatnianie odczas. n Potoczny zniknięcie odczas. n odparowanie odczas. n

ИСПАРЕНИЕ

переход в-ва из жидкого или твёрдого состояния в газообразное (пар). И. твёрдого тела наз. возгонкой. Обычно под И. понимают парообразование, происходя... смотреть

ИСПАРЕНИЕ

приставка - ИС; корень - ПАР; суффикс - ЕНИ; окончание - Е; Основа слова: ИСПАРЕНИВычисленный способ образования слова: Приставочно-суффиксальный или п... смотреть

ИСПАРЕНИЕ

с1) (действие) buharlaşma 2) buğu се́рные испаре́ния — kükürt buğusuСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоисп... смотреть

ИСПАРЕНИЕ

с.1) evaporización f; exhalación f (выделение)2) мн. испарения vapores m pl, humos m pl; emanaciones f pl; miasmas m pl

ИСПАРЕНИЕ

1) (действие) 蒸发 zhēngfā2) обычно мн. испарения 气 qì, 蒸气 zhēngqìвредные испарения - 毒气; 恶气Синонимы: вапорация, вапоризация, выкипание, выпаривание, ис... смотреть

ИСПАРЕНИЕ

техн., физ. 1) (действие) випаро́вування, випарува́ння - вакуумное испарение - внутритканевое испарение - естественное испарение - катодное испарение - медленное испарение - поверхностное испарение - ступенчатое испарение 2) (испаряющееся вещество) ви́пар, -ру - взрывообразное испарение Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация... смотреть

ИСПАРЕНИЕ

Рис Рин Риа Репс Репин Репа Рение Расин Рапс Ранее Раис Прение Пран Пра Писание Пирс Пиренеи Пирен Пиран Пир Пие Пиар Пиан Пес Перси Перс Перина Пери Перес Пенс Пенис Пение Пена Пеан Парс Пари Парение Панир Пани Пан Нии Нерпа Нереис Нер Непер Испарение Иса Ириса Ирина Иран Сан Сани Сап Сапер Ипс Иена Ера Сапр Ение Сени Сиена Син Синап Сип Арсин Сирена Арсен Арин Апис Анри Анис Аир Спин Арен Снип Сирин Сипение Серп Серин Сера Сена Аспирин Сари... смотреть

ИСПАРЕНИЕ

(2 с), Пр. об испаре/нии; мн. испаре/ния, Р. испаре/нийСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транс... смотреть

ИСПАРЕНИЕ

с. evaporazione f; vaporizzazione f - испарение в вакууме- катодное испарение- мгновенное испарение- повторное испарение- противоточное испарение- пря... смотреть

ИСПАРЕНИЕ

сущ. ср. рода1. испаряющееся веществовипар -у імен. чол. роду2. действиевипаровування¤ 1. ядовитые испарения -- отруйні випари ¤ 2. испарение жидкости... смотреть

ИСПАРЕНИЕ

парообразование, происходящее на свободной поверхности жидкости; фазовый переход первого рода. И. с поверхности тв. тела наз. сублимацией, парообразова... смотреть

ИСПАРЕНИЕ

Символизирует трансформацию, переход от вод низших к водам высшим. Его символизм связан с символизмом солнца, дождя, огня и воды как силами и противостоящими, и дополняющими друг Друга.<br><b>Синонимы</b>: <div class="tags_list"> вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация </div><br><br>... смотреть

ИСПАРЕНИЕ

испаре́ние, испаре́ния, испаре́ния, испаре́ний, испаре́нию, испаре́ниям, испаре́ние, испаре́ния, испаре́нием, испаре́ниями, испаре́нии, испаре́ниях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация... смотреть

ИСПАРЕНИЕ

Испарение – парообразование, происходящее на свободной поверхности жидкости. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Стро... смотреть

ИСПАРЕНИЕ

испарениеהִתאַדוּת נ'; אִידוּי ז'* * *אידויהתאדותהתנדפותהתפוגגותСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарен... смотреть

ИСПАРЕНИЕ

Испаре́ние1) (пар) mfukuto (mi-), mvuke (mi-);испаре́ния — ghazi (-), jasho (-; ma-), moshi (mioshi), ufukuto ед., vuke (ma-)2) (парообразование) mvuki... смотреть

ИСПАРЕНИЕ

испарение сущ.сред.неод. (1) мн.им. Огибаю Артиллерийскую бухту, базар, живопись, купаются, скверные испарения.Пут9.

ИСПАРЕНИЕ

с.Verdampfung f, Abdampfen n, Evaporation f, Verdunstung fСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, тр... смотреть

ИСПАРЕНИЕ

испарение с 1. Verdunstung f c; Verdampfung f c (горячее) 2. мн. испарения (пары'') Dämpfe m pl, Ausdünstungen f pl, Dünste m plСинонимы: вапорация, в... смотреть

ИСПАРЕНИЕ

n.evaporation, vaporization; pl., fumesСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучи... смотреть

ИСПАРЕНИЕ

Ударение в слове: испар`ениеУдарение падает на букву: еБезударные гласные в слове: испар`ение

ИСПАРЕНИЕ

1) (процесс) выпарванне, -ння2) (испаряющееся вещество) выпарэнне, -ння- испарение в вакуум- испарение вакуумное- испарение вещества- испарение взрывно... смотреть

ИСПАРЕНИЕ

ИСПАРЕНИЕ испарения, ср. (книжн.). 1. только ед. Действие по глаг. испарить-испарять и испариться-испаряться (спец.). Испарение жидкостей. 2. Медленно выделяющийся пар, испаряющееся газообразное вещество. С болота поднимались ядовитые испарения. Вредные испарения.<br><br><br>... смотреть

ИСПАРЕНИЕ

avdunstning, damp, dunst, evaporasjon, fordunstningСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспира... смотреть

ИСПАРЕНИЕ

см. потерянный на испарение Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эва... смотреть

ИСПАРЕНИЕ

1) evaporation; 2) vaporizationСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, э... смотреть

ИСПАРЕНИЕ

испар'ение, -яСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация,... смотреть

ИСПАРЕНИЕ

с. 1) evaporazione f 2) мн. esalazioni f pl Итальяно-русский словарь.2003. Синонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапорация... смотреть

ИСПАРЕНИЕ

páraСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспирация, эвапораци... смотреть

ИСПАРЕНИЕ

испарениеaufdampfenСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспир... смотреть

ИСПАРЕНИЕ

испарениеbedampfenСинонимы: вапорация, вапоризация, выкипание, выпаривание, испарина, миазм, самоиспарение, транспирация, улетучивание, эванотранспира... смотреть

ИСПАРЕНИЕ

Испарение- evaporatio; vapor; halitus; exhalatio; caligo; spiritus (spiritus pestilens); exspiratio;• влажные испарения поднимаются от земли - humida c... смотреть

ИСПАРЕНИЕ

• evaporace• odpar• odpaření• odpařování• vypaření• vypařování• výpar

ИСПАРЕНИЕ

испарен||иес 1. (действие) ἡ ἐξάτμιση {-ις}, ἡ ἀναφυμίαση {-ις}· 2. ~ия мн. οἱ ἀναθυμιάσεις, οἱ ἀτμοί: вредные ~ия οἱ βλαβερές ἀναθυμιάσεις, τά μιάσματα.... смотреть

ИСПАРЕНИЕ

ср. 1. буулануу, бууга айлануу; процесс испарения бууга айлануу процесси; 2. чаще мн. буу (бууга айлануучу заттар); вредные испарения зыяндуу буулар.... смотреть

ИСПАРЕНИЕ

ИСПАРЕНИЕ, парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией.

ИСПАРЕНИЕ

испарение = с. 1. (действие) evaporation; 2. обыкн. мн. (испаряющееся вещество) fume, vapour; вредные испарения harmful/notious fumes.

ИСПАРЕНИЕ

испаре'ние, испаре'ния, испаре'ния, испаре'ний, испаре'нию, испаре'ниям, испаре'ние, испаре'ния, испаре'нием, испаре'ниями, испаре'нии, испаре'ниях

ИСПАРЕНИЕ

ИСПАРЕНИЕ - парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией.

ИСПАРЕНИЕ

испарение, испар′ение, -я, ср.1. см. испарить, -ся.2. мн. ч. Испаряющееся вещество. Вредные испарения. Болотные испарения.

ИСПАРЕНИЕ

ИСПАРЕНИЕ , парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией.

ИСПАРЕНИЕ

ИСПАРЕНИЕ, парообразование, происходящее на свободной поверхности жидкости. Испарение с поверхности твердого тела называется сублимацией.

ИСПАРЕНИЕ

(преим. вредное, зловонное) effluvium, fume, vaporation, vaporization, evaporation, expulsion, steam, volatilization, transpiration

ИСПАРЕНИЕ

ср.evaporation; (выделение) exhalation

ИСПАРЕНИЕ

1) effluvium 2) evaporation 3) vaporization

ИСПАРЕНИЕ

Ср 1. buxarlanma, buğlanma; процесс испарения buxarlanma prosesi; 2. buxar, buğ; вредные испарения zərərli buxarlar.

ИСПАРЕНИЕ

Abdampfen, Abdunsten, Ausdämpfen, Eindampfen, Evaporation, Verdampfung, Verdunstung

ИСПАРЕНИЕ

ИСПАРЕНИЕ, -я, ср. 1. см. испарить, -ся. 2. мн. Испаряющееся вещество. Вредные испарения. Болотные испарения.

ИСПАРЕНИЕ

испарение парообразование, эвапорация, выкипание, вапоризация, миазм, улетучивание, транспирация

ИСПАРЕНИЕ

1. книжн. см. испарить, испариться;2. испарения булану, буланған зат;- вредные испарения зиянды бу

ИСПАРЕНИЕ

Начальная форма - Испарение, винительный падеж, единственное число, неодушевленное, средний род

ИСПАРЕНИЕ

1) Ausdampfen 2) Ausdünstung 3) Evaporation 4) Vaporisation 5) Verdampfung 6) Verdunstung

ИСПАРЕНИЕ

تبخير ؛ ابخره

ИСПАРЕНИЕ

испарение буғшавӣ, бухоршавӣ; буғ кардан(и), бухор кардан(и); буғ шудан(и), бухор шудан(и)

ИСПАРЕНИЕ

с. 1) Verdunstung f 2) мн. ч. испарения (пары) — Dämpfe pl, Ausdünstungen pl, Dünste pl.

ИСПАРЕНИЕ

с 1.см. испарить(ся) 2.обычно мн.испарения парлар, булар; вредные и. зарарлы парлар

ИСПАРЕНИЕ

выпарванне, ср.выпарэнне, ср. выпарэнне, ср.

ИСПАРЕНИЕ

с.evaporation; vaporization

ИСПАРЕНИЕ

izgarošana, iztvaikošana, iztvaicēšana; izgarojumi, iztvaikojumi, garaiņi

ИСПАРЕНИЕ

1) (процесс) выпарванне, -ння 2) (испаряющееся вещество) выпарэнне, -ння

ИСПАРЕНИЕ

emanación, evaporización, gases, gasificación, vapor, vaporización

ИСПАРЕНИЕ

Eindunsten, Verdunstung, Verdampfung

ИСПАРЕНИЕ

с. evaporation, vaporization

ИСПАРЕНИЕ

évaporation; vaporisation

ИСПАРЕНИЕ

Abdampfen, Verdampfung

ИСПАРЕНИЕ

buharlaşma, buharlaştırma, buğulaşma, terleme

ИСПАРЕНИЕ

évaporation, vaporisation, volatilisation

ИСПАРЕНИЕ

испарение испар`ение, -я

ИСПАРЕНИЕ

Eindunsten, Verdunstung, Verdampfung

ИСПАРЕНИЕ

1) evaporazione 2) vaporizzazione

ИСПАРЕНИЕ

1) vaporisation 2) volatilisation

ИСПАРЕНИЕ

Ууршил, хөлс бурзайх

ИСПАРЕНИЕ

Выпарванне, выпарэнне, выпарэнне

ИСПАРЕНИЕ

n Verdunstung f, Evaporation f

ИСПАРЕНИЕ

evaporation, vaporization

ИСПАРЕНИЕ

испарение с η εξάτμιση

ИСПАРЕНИЕ

булану, буландыру

ИСПАРЕНИЕ

булану, буландыру

ИСПАРЕНИЕ

{N} գոլորշիացւմ

ИСПАРЕНИЕ

vaporization

ИСПАРЕНИЕ

evaporazione

ИСПАРЕНИЕ

буландыру

ИСПАРЕНИЕ

шиньфтама

ИСПАРЕНИЕ

параванне

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

ИСПАРЕНИЕ

булану

T: 192